CH.10 Statistical Inference
for Two Samples

Inference on the difference 1n means of two
normal distributions, variances known

Inference on the difference in means of two
normal distributions, variances unknown

Paired t-test

Inference on the variances of two normal
distributions

Inference on two population proportions




10-1 Introduction

Fopulation 1 Fopulation 2
2
5
P
| ™
Sampla 1: sample 2:
110 X1zeeer X1y K21 Xzzee Xang

Two independent populations.



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances

Known

Assumptions

1. Xy, X .., Ay, 15 a random sample from population 1.

1. Xy, Ay, ..., A5, is a random sample from population 2.

3. The two populations represented by X, and X are independent.
4

. Both populations are normal.

E(X) — X3) = E(X)) — E{(X3) = w — ps

S S

X — X)) = 1) + V(X) = Tul T



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances

Known

The quantity

has a N(0, 1) distribution.

(10-1)




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-1.1 Hypothesis Tests for a Difference in Means,
Variances Known

Null hypothesis:  Hyg pyp — po = 4y

- X, — X -4 .
Test statistic: A — (10-2)
0y | I
\ T Ha
Alternative Hypotheses Rejection Criterion
H|:|..L| _|...L:=.é.|f'h|:| :U}:ug'zl:’r:ﬂ{:_:ujz
Hytpy — p2 = 4y Iy = Iy

Hytpy — e < 4y Ty = T I




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

A product developer 15 interested in reducing the drving time of a primer paint. Two [ormula-
tions of the pamnt are tested: formulation 1 s the standard chemistry, and formulation 2 has a

new drying ingredient that should reduce the drying time. From expenience, 1t 15 known that
the standard deviation of drving time 15 8 minutes, and this inherent variability should be un-

alfected by the addition of the new imgredient. Ten specimens are painted with formulation 1.

and another 10 specimens are painted with formulation 2; the 20 specimens are painted in
random order. The two sample average drying times are X; = 121 munutes and X, = 112
minutes, respectively. What conclusions can the product developer draw about the effective-

ness of the new ingredient. using e = 0.057
We apply the eight-step procedure to this problem as follows:

. The quantity of interest 15 the difference in mean drying times, by — po. and &y = 0.

Hyg g — P = Qor Hy g = po
Hyowy = o Welwant to reject Hy if the new ingredient reduces mean drying time.

b

Gk
L

whuse

oy = L0



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-1

5. The test statstic 15
."._'| - ."._': —
[ o —
|07 i a3
N Hy 1y
where o = o3 = (8) = 6dandny = ny = 10
{‘r |';I'.'w.l._|'w..l'-.~|. !l'r”: J.L| == |:.-|.: ||__|:| .-:" |.'.-"'_‘I':T' == __||_||-'..
7. Computations: Smce X = 121 munutes and X3 = 112 nunutes, the test statistic 1s
121 — 112 )
=0 = —* e
(B (B)
LIRS
IIII.I | () | ()




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-1

8. Conclusion: Since z; = 252 = 1645, we reject Hy: iy = g at the oo = 0.05 level
and conclude that adding the new mgredient to the pamnt significantly reduces the

drying time. Alternatively, we can find the P-value for this test as

@ | - ®(2.52) =>

Therefore, Hy: iy = Py would be rejected at any significance level w = 0.0059,




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-1.2 Type Il Error and Choice of Sample Size

Use of Operating Characteristic Curves
Two-sided or oy — po — Ay |A — Ay

. 1 . J oo ;] _ 3 g
one-sided alternative: Vol + o Vol + ol

Choose equal sample sizes, n=n,=n,
If not possible: n;#n,, compute equivalent value of n as follows

ne— 9 L +0; make adjustment to n,; and n, until
o’ /n +o2/n, the specified B is reached.



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-1.2 Type Il Error and Choice of Sample Size

Sample Size Formulas

Two-sided alternative:

For the two-sided alternative hypothesis with significance level o, the sample size
H; = n, = nrequired to detect a true difference in means of A with power at least

l — Bis

(za2 + zp) (07 + 03)
(A — Ag)’

(10-5)

j";IE




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-1.2 Type Il Error and Choice of Sample Size

Sample Size Formulas

One-sided alternative:

For a one-sided alternative hypothesis with significance level «, the sample size
n, = H, = n required to detect a true difference in means of A(#4,) with power

at least 1 — B 1s

z. + z) (o7 + o)
n= S ':f:"-E} A (10-6)
0




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances

Known
Example 10-3

To illustrate the vse of these sample size equations, consider the situation described n
Example 10-1. and suppose that af the true difference in drving times 1s as much as 10 min-
utes, we want to detect this with probability at least 0.90. Under the null hypothesis, A, = 0.
We have a one-sided alternative hyvpothesis with A = 10, o = 0,05 (30 2, = Zp0s = 1.645),
and since the power 15 0.9, B = 0.10 (so zz = z;;5 = 1.28). Therefore we may find the re-
quired sample size from Equation 10-6 as follows:

C(za tzp)er +o3) (1645 + 128P[(RY + (8)7)

5] = ||

(A — A) (10 — 0y
Thiz s exactly the same as the result obtamed from using the O.C. curves,
0 i ALSO,
d = M0 10 _ 0.88 with p=0.1, d=0.88, 0=0.05

Joi+o., N8 +§ from Appendix Chart VIlc

n=n,=n,~11



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-1.3 Confidence Interval on a Difference in Means,
Variances Known

Definition

If ¥, and ¥, are the means of independent random samples of sizes n; and n, from
two independent normal populations with known variances oy and o3, respectively,
a 100(1 — «w)% confidence interval for p; — pis

_ _ 'crl crf- ~ _ crzl crg -
X1 — ..f.;.ﬂ'I.l‘:nHII ", + — n, — I.L] — K2 =X — X9 + .;.1“.!2\" ", ~+ __ {lﬂ- )

where z,;, is the upper a/2 percentage point of the standard normal distribution.




10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-4

Tenzile strength tests were performed on two different grades of alumimum spars used in
manufacturing the wing of a commercial transport aircraft. From past experience with the spar
manufacturing process and the testing procedure, the standard deviations of tensile strengths
are assumed to be known. The data obtamed are as follows: ny = 10, ¥ = 87.6. oy = 1.
iy =12.% = 745 and o, = 1.5 It i, and , denote the true mean tensile strengths for the
two grades of spars, we may find a 0% conhdence interval on the difference in mean strength

My — o as follows:

— — - ﬂf E% - " — _ 'l:rlz lJ'%
X1~ X2 T Zapzy E e e B Bl Vo T
_ i1y (1.5 (12)  (1.3)

87.6 — T4.5 — 1.645 4 m + | =Wy — Mo =876 — 745 + 1645 [— +



10-1 Inference for a Difference in Means

of Two Normal Distributions, Variances
Known

Example 10-4

Theretore, the 90% conhidence mterval on the difference m mean tensile strength (in kilo-
grams per square millimeter) s

1222 = w; — Py = 1398 (1in kilograms per square millimeter)

MNotice that the confidence mterval does not include zero, implying that the mean

strength of aluminum grade 1 () exceeds the mean strength of aluminum grade 2 (). In

fact, we can state that we are 90% confident that the mean tenszile strength of aluminum

grade | exceeds that of alumimum grade 2 by between 1222 and 13,98 kilograms per
square millimeter,



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Choice of Sample Size

Y.
n= ( E;_) (o] + a3) (10-8)

The required sample size so that the error in estimating p,- p, by
X, —X, will be less than E at 100(1-a)% confidence.



10-1 Inference for a Difference in Means
of Two Normal Distributions, Variances

Known

One-Sided Confidence Bounds
Upper Confidence Bound

[ 2 2
0] a2

L — =X — X3 + = “\E_l_m (10-9)
Lower Confidence Bound
0 0
X — % ‘ = (10-10)

X1 —lz—éux'ﬂ Ty =1 T g




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

10-2.1 Hypotheses Tests for a Difference in Means,
Variances Unknown

2 2 2
Casel:6, =06, =0

We wish to test:

ot iy — a2 - Ay
Hitpy — o F 4y



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances

Unknown

10-2.1 Hypotheses Tests for a Difference in Means,
Variances Unknown

Case 1: 012 — g% — 02

. 2 .
combine S; and S; to form an estimator of 62

The pooled estimator of ¢2:

The pooled estimator of o, denoted by 3:;'“ 15 defined by

g2 (m—1Si+ (m — DS;

P

(10-12)

n + n, — 2




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances

Unknown

10-2.1 Hypotheses Tests for a Difference in Means,

Variances Unknown

Case 1: 012 — g% — 02

(iven the assumptions of this section, the quantity

X — X — () — o
. _-lmll na)

'SP\.E-FE

has a ¢ distribution with »ny, + 1, — 2|degrees of freedom.

(10-13)




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Definition: The Two-Sample or Pooled t-Test

Null hvpothesis: Hy g — o = 4y

X, - X, — A

G I 1
IP\E-FE

Test statistic: Iy = (10-14)

Alternative Hypothesis Rejection Criterion

Hyiwy — poe #= Ap ty = to/2m +ny—2 OT
"rl:l 1:: _lrl.'l,l"':_']|+rr'1_:
Hytpy — gy = 4y R

Hyty — < 4y fy = ~lam+a-2




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-5

Two catalysts are being analyzed 1o determine how they altect the mean yield of a chemical
process. specithically, catalvst 1 s currently in use, but catalyst 2 15 acceptable. Since catalvst
215 cheaper, 1t should be adopted, providing it does not change the process yield. A test 15 run
in the pilot plant and results in the data shown in Table 10-1. 1s there any difference between

the mean vields? Use o = 0,05, and assume equal variances.




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-5

Table 10-1 Catalyst Yield Data, Example 10-5

Observation
Number Catalyst 1 Catalyst 2
| 91.50 80,149
2 04,18 00,95
3 92.18 00,46
4 95.39 93.21
3 91.79 97.19
6 %0.07 07.04
7 04.72 01.07
8 80.21 92.75

x = Y2255 X2 092,733




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances

Unknown
Example 10-5

The solution using the eight-step hypothesis-testing procedure 15 as follows:

. The parameters of mterest are W, and .. the mean process vield using catalysts
| and 2. respectively, and we want to know if u, — p, = 0

o Hy iy — e = Ofor Hy g = pg

3. Hiw F O

4. o= 005

5. The test statistic 15

0. |{'“-"_i"-:"-'|- J'!.Ir.::. illur” = |r|._||:_=__|_1_ == : |-I':T' ar i|1|r.| = —|r.|_.::._'_-q_|_|_ == _:l—l':r'




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-5

= )

7. Computations: From Table 10-1 we have X, = 92255, 5, = 239, m = 8,5, = 92733,
5, = 298, and ny = 8. Therefore

,m = s+ (= )55 (T)(2.39)° + 7(2.98)°

- = = 7.30)
m o+, = 2 84+ 5-—-2
s, = V7.30 = 2.70
and
T -5 92.255 — 92.733 :
fn = = = = —{.35
T o]
M,  — 4+ — 2 —+ —
Ny 1y VR R
8. Conclusions: Since =2 145 << ¢, = —0.35 << 2 145, the null hvpothesis cannot he

rejected. That 1=, at the 0.05 level of significance, we do not have strong evidence to
conclude that catalyst 2 results in a mean yield that differs from the mean yield when

catalyst 115 used.



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Minitab Output for Example 10-5

Minitab Computations

Two-Sample T-Test and CI: Cat 1, Cat 2

Two-sample T for Cat | vs Cat 2

N Mean StDewv SE Mean
Cat | 5 02.26 2.39 .84
Cat 2 5 02.73 2.99 .1

Dhifference = mu Cat | — mu Cat 2

Estimate for difference: —0.48

95% C1 for difference: ( —3.37. 2.42)

T-Test of difference = U (vs not = ) T-Value = —0.35 P-Value = (.,730 DF = 14
Both use Pooled StDev = 2,70




10-2 Inference for a Difference in Means
of Two Normal Distributions, VVariances
Unknown

29

- 9a
a5 ~
C.:I [ |
A Qg
[ni]
Bz ]
E B - g4
g 40 i
:;_

=

= Cat 1 90 l \
* Cat 2
a8
28 93 28 | 2
Yiald data Catalyst typa
(a) (B

Normal probability plot: 1) normality assumption can be made.
2) similar slopes indicate assumption of equal variances

Comparative box plot: no obvious difference in the two catalysts. However,
catalyst 2 has slightly greater sample variability.



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

10-2.1 Hypotheses Tests for a Difference in Means,
Variances Unknown

2 2
Case 2. G, # G,

ST 8

T,
\ 2

Ty (10-15)

is distributed approximately as t distribution with degrees
of freedom v given by




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

10-2.1 Hypotheses Tests for a Difference in Means,
Variances Unknown

2 2
Case 2. G, # G,

ST STV
m T m
(Si/m)* N (83/m)”

nm — 1 ny — 1

(10-16)

V=




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6

Arsenic concentration in public drinking water supplies 15 a potential health nsk. An article in
the Arizona Republic (Sunday, May 27, 2001 ) reported drinking water arsenic concentrations
in parts per billion (ppb) for 10 methropolitan Phoenix communities and 10 communities in

rural Arizona. The data follow:

@Phﬂtﬂi}; I"TI — lj'-;"-"'-l — D @."iri}fnﬂﬂ rT: = :?..;'__-.;: = |_;'-1'_:|

Phoeni 3 Rumrock, %
Chandler, 7 Goodyear, 44

Gilbert, 25 MNew Raver, 440
Glendale, 10 Apachie Junction, 38
Mesa, 15 Buckeve, 33

Paradize Valley., & Nogales, 21

Peoria, 12 Black Canyon City, 20
Scottsdale, 25 Sedona, 12

Tempe, 15 Pavson, |

Sun City, 7 Casa Grande, |8



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

29

Fercantage
£en
=

Figure 10-2 Normal o
probabillity plot of the 5
arsenic concentration

data from Example 10-6.

= PHX
= RuralAZ

0 10 20 30 4 50 B
Arsenic concantration in parts per billion



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

We wish to determine it there 15 any difference in mean arsenic concentrations between mel-
ropalitan Phoenix communities and communities in rural Anizona. Figure 10-3 shows a nor-
mal probability plot for the two samples of arsenic concentration. The assumption of normal-

Ity appears quite reasonable, but since the slopes of the two straight hines are very different. 1t

1= unlikely that the population varances are the same.

Applying the eight-step procedure gives the following:

1. The parameters of interest are the mean arsenic concentrations for the two geographic regions, say:
oy and p. and we are interested in determining whether w, — p, = 0.

Ll Hy g — e = WorHy py = gy
3o Hi g #=
4. o = 0.05 (say)




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

5.  The test statistic is

.".'| - I: — 0

-
o = 3 .
5 §5

+
\om Fig

6. The degrees of freedom on ¢ are found from Equation 10-16 as

F.rﬂf (15.3)*7°
_|_
10 [ ()

e e L o =132 13
(57/m ].—' I~'~":'-u"l"'|: fl' [|'- 7 _ﬁ_‘,glJ—J,-' |_ i :|]— [|'- |_ 5 :é.]_-;.- l (] ]_
+ "5
m — | ny — | 0 q

Therefore, using o = 0LO3, we would reject Hy w, = s if fh = toms s = 2. 160 or if
th < —togesiz = —2.160




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

7. Computations: Using the sample data we find

. T T T 125 = 27.5
£ = — - — = -2.77
s 83 (T.63)F  (13.3)F
TR U TR T
8. Conclusions: Because 1, = —2.77 < fopasgs = —2.160, we reject the null hypothesis.

Therefore, there is evidence to conclude that mean arsenic concentration in the drinking
water in rural Arizona is different from the mean arsenic concentration in metropolitan
Phoenix drinking water. Furthermore, the mean arsenic concentration is higher in rural
Arizona communities, The P-value for this test is approximately P = 0.016.




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

10-2.2 Type Il Error and Choice of Sample Size

Case 1: (712 — G; — (72
Use operating characteristic curves in Appendix Charts Vlle, VIIf, VIIg, VIIh.
d = ‘A B AO‘
20
n =2n-1

2 2
Case 2. G, # O,

No operating characteristic curves are available.



10-2 Inference for a Difference in Means

of Two Normal Distributions, Variances
Unknown

10-2.2 Type Il Error and Choice of Sample Size
Example 10-7

Consider the catalyst experiment in Example 10-3. Suppose that, if catalyst 2 produces a mean yield that

differs from the mean yield of catalyst 1 by 4.0%, we would like to reject the null hypothesis with prob-
ability at least (.85, What sample size is required?

Using s, = 2.70 as a rough estimate of the common standard deviation o, we have d = A

|4.0]/[(2)(2.70)] = 0.74. From Appendix Chart Vlle with d = 0.74 and p = 0.15, we find n” = 20,
approximately. Therefore, since n” = 2n — 1,

2o =

T+ 20+ 1
,r=”2 = ——— = 10.5 = 11(say)

s’

and we would use sample sizes of v, =n, =n=11.



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Minitab Output for Example 10-7

Minitab Computations

Power and Sample Size

2-Sample ¢ Test

Testing mean | = mean 2 (versus not =)

Calculating power for mean | = mean 2 + difference
Alpha = 0.03 Sigma = 2.7

sample Target Actual
Difference Size Power Power
4 1) (0.8 500 0.8793




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances

Unknown
10-2.3 Confidence Interval on the Difference in Means,
Variance Unknown

Case 1: 612 = G; = 62

If ¥.X>. s and s3 are the sample means and variances of two random samples of
sizes m; and m,, respectively, from two independent normal populations with un-
known but equal variances, then a 1M1 — w )% confidence interval on the differ-
Ence in means jLy — L, I8

11

X — X3 — il'-:nl_,-"lrr|+.*r:—3 Sp ‘-\ E + M

_ ' 1 |
=W — B2 =X — X2t lyy a4n-25p \ 7y o, (10-19)

where s, = V[(n — 1}:;% + (my — l}si].f'r[nl + ny — 2) 15 the pooled estimate

of the common population standard deviation, and 742 ; 4+,,—2 is the upper a/2
percentage point of the f distribution with n, + n, — 2 degrees of freedom.




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Case 1: 612 — G; — 62

Example 10-8

Anarticle in the journal Hazardouws Waste and Hazardous Materials (Vol. 6, 1989) reported
the results of an analysis of the weight of calcium in standard cement and cement doped
with lead. Reduced levels of calcium would mdicate that the hydration mechanizm n the
cement 15 blocked and would allow water to attack varous locations i the cement struc-
ture. Ten samples of standard cement had an average weight percent calcium of ¥, = 90,0,

with a sample standard deviation of 5y = 3.0, while 135 samples of the lead-doped cement

had an average weight percent calcium of X; = 87.0, with a sample standard deviation of
5, = 4.0,

We will assume that weight percent calcium 1s normally distnibuted and find a 93% con-
fidence interval on the difference in means. w, — w,. for the two tvpes of cement. Furthermaore,
we will assume that both normal populations have the same standard deviation.




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Case 1: 612 = G; — 62
Example 10-8 (Continued)

The pooled estimate of the commaon standard deviation 1s found vsing Equation 10-12 as

|II.I||| s

(= S+ (my = 1)s3
."-'I; =

mo+ o, — 2
9(5.0)° + 14{4.0)
0+ 15=2

= |4.52




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Case 1: 612 — G; — 62

Example 10-8 (Continued)

Therefore, the pooled standard deviation estimate JG 19.52 = 4.4)The 95% confidence interval
15 found vsing Equation 10-19:

l l | l

TR T hesnS\ Ty, Sk T =N TR T hesnspy T

or upon substituting the sample values and L|.~ajng@3 = 2.069,

|
00.0 — 87.0 — 2.060(4.4), + 5
) o

|
xm = K 2

= 90.0 — 87.0 + 2.069(4.4), ﬁ + —



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Case 1: 612 — G; — 62

Example 10-8 (Continued)

which reduces to
Notice that the 95% confidence interval includes zero: therefore, at this level of confidence we_cannot
conclude that there is a difference in the means. Put another way, there 1s no evidence that doping the ce-

ment with lead affected the mean weight percent of calcium; therefore, we cannot claim that the presence
of lead affects this aspect of the hydration mechanism at the 93% level of confidence.




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

10-2.3 Confidence Interval on the Difference in Means,
Variance Unknown

Case 2: 612 - G;

— — i) = " - - ¢
[f X, ¥, 1. and 53 are the means and variances of two random samples of sizes n; and
14, respectively, from two independent normal populations with unknown and unequal
variances, an approximate 100(1 — «)% confidence interval on the difference in

means by — o 15

| o2

[ i) i)
_ _ | 87 &3 B _ _ | & 57 )
.1] — 'TE — fm.ll.l_.\'m + E = I-I‘J I'I‘E = .Tl 'TE + I'Z'I!.-'rl'l-'\. .i"i'j + ”2 '[ lﬂ—zﬂi

where v is given by Equation 10-16 and 7, , is the upper a/2 percentage point of the
¢ distribution with v degrees of freedom.




10-4 Paired t-Test

» A special case of the two-sample t-tests of Section
10-2 occurs when the observations on the two
populations of interest are collected In

* Each pair of observations, say (Xy;, X, ), Is taken
under homogeneous conditions, but these conditions
may change from one pair to another.

e The test procedure consists of analyzing the
differences on each pairr.



10-4 Paired t-Test

The Paired t-Test

Null hypothesis: Hy: pp = 4y

. D — A
Test statistic: Ty = =
SD,l'Ir WM

Alternative Hypothesis

= Xyj = Xy,

= sample average of D.
! (10-22)
sample standard dev. of D;

H|Z |..L[:.=.J"= .':'n.u
H|: |..L-I;.:5' |'1|:|
H|: |..L-I;.':: |'1|:|

Rejection Region

fy = ta2p—1 O o =< —fgm2 n—]
Iy = Yo, n—1
fp = —lgn-




10-4 Paired t-Test
Example 10-9

An article in the Jowrnal of Strain Analysis (1083, Vol. 18, No. 2)_compares several methods

tor predicting the shear strength Tor steel plate girders. Data for two of these methods, the
Karlsruhe and Lehigh procedures, when applied to mine specihe girders, are shown in Table
10-2. We wish to determine whether there 15 any difference (on the average) between the two

methods.

Table 10-2  Strength Predictions for Nine Steel Plate Girders
(Predicted Load/Observed Load)

Girder Karlsruhe Method Lehigh Method / Difference d;

S1/1 1186 1061 /’ 0.119
S2/1 1151 0.992 0.159
S3/1 1.322 1.063 0.259
S4/1 1339 1.062 0.277
§5/1 1.200 063 0.138
S2/1 1.402 1178 0.224
52/2 1.365 1.037 0,328
§2/3 1.537 .06 0.451
52 /4 1.550 1052 0.507

N



10-4 Paired t-Test
Example 10-9

The eizht-step procedure 15 apphed as follows:

1. The parameter of mterest 15 the dilference in mean shear strength between the two
methods, sav. wp = by — Wy = 0,

:r Iri'r[]: |!..|.-_|l_] = (J

3] .Irllr|: L = ()

4, o= .05

5. The test statizstic 15

.

ty = =—u=
" s/ Vi

0. J{'-_"'_i'q."l..-"l !r'.!r|] 13 Iy = hms g = 2 3006 or H‘f” = —lnopse = — 2 306,




10-4 Paired t-Test
Example 10-9

7. Computanens: The sample gverage and standard deviation of the differences o, are
d= 02736 and s, = 0.1356] =0 the test statistic is

i (L2736

IIl _ — —_ ~ — —_
O sp/VE O 0.1336/V0

. 005

8. Conclusions: Since ¢, = 6.05 = 2306, we conclude that the strength prediction
methods vield different results. Specihically, the data indicate that the Karlsruhe
method produces, on the average, higher strength predictions than does the Lehigh
method. The P-value for i, = 6.05 15 P = 0.0002, so the test statistic 15 well into the
critical region.




10-4 Paired t-Test

Paired Versus Unpaired Comparisons

Sohow do we decide to conduct the experiment? Should we pair the observations or not?

Although there 12 no general answer to this question, we can give some guidelines based on

the above discussion.

1. If the expertmental units are relatively homogeneous (zamall o) and the correlation
within pairs 1s small. the gain in precizion attributable to pamring will be offset by the

loss of degrees of freedom. so an independent-sample experiment should be used.

(R

[T the expernimental units are relatively heterogeneous ( large o) and there 1s large pos-
itive correlation within pairs. the parred experniment should be used. Typically, this
case occurs when the expenimental units are the same for both treatments; as in
Example 10-9_ the same girders were used to test the two methods,




10-4 Paired t-Test

A Confidence Interval for pg

Definition

If 4 and s, are the sample mean and standard deviation of the difference of n random
pairs of normally distributed measurements, a 100(1 — a}%s confidence interval on
the difference in means pp = p; — py 18

d— !,1“.-31,,_1.5'5,.'{1-".; = up = d + 5.1,-'1.-:—]-5'5'-"{1"*':‘; (10-23)

where £, ,—, 1s the upper a /2% point of the t-distribution with n — | degrees of
freedom.




10-4 Paired t-Test

Table 10-3 Time in Seconds to Parallel Park Two

Exam p I e 10_10 Automobiles
Automohile Difference
Subject (o) 2(x5) (d,
| 37.0 17.8 19.2
2 25.8 20.2 5.6
3 16.2 168 —(.6
4 24.2 41.4 —17.2
3 22.0 21.4 0.6
& 33.4 38.4 —5.0
7 23.8 168 1.0
5 38.2 32.2 26.0
4 33.6 27.8 3.8
10 24.4 23.2 1.2
11 23.4 29.6 —6.2
12 21.2 20.6 0.6
13 36.2 32.2 4.0
14 208 338 —24.0




10-4 Paired t-Test

Example 10-10

The journal Heman Factors (1962, pp. 375-380) reports a study in which n = 14 subjects
were asked to parallel park two cars having very difterent wheel bases and turning radn. The
time n seconds for each subject was recorded and 15 given in Table 10-3. From the column of
abserved differences we calculate d = 1.21 and s, = 12.68. The 90% confidence interval for
Mp = ey — Ho 15 found from Equation 9-24 as follows:

d — topsassp/ Vi = pp = d + tygs1asp/ Vi

.21 — I.??Ifl:.-’ﬂ?{]f"aﬁ = Wkp = 121 + L77I(12.68)/V]

—4.70 = pp=

MNotice that the confidence interval on Wy, includes zero. This implies that. at the 90% level of con-
hdence. the data do not support the clamm that the two cars have different mean parking times
and .. That s, the value iy, = py — W, = 015 not inconsistent with the observed data.



10-5 Inferences on the VVariances of Two
Normal Populations

10-5.1 The F Distribution
We wish to test the hypotheses:

Hy o7 = o3

Hy: o] # o3

e The development of a test procedure for these

hypotheses requires a new probability distribution, the




10-5 Inferences on the VVariances of Two
Normal Populations

10-5.1 The F Distribution

Let W and ¥ be independent chi-square random variables with w and v degrees of
freedom, respectively. Then the ratio

.-F-'
g W (10-26)

Y/v

has the probability density function

u + v\ \¥?
_ (0 2)—1
() e
'f l:']l} = 2 - 1 (ee+w)/ 2 0<
(3)r(3)] ()]

and 1s said to follow the F distribution with # degrees of freedom in the gumerator
and v degrees of freedom in the denominator. It 15 usually abbreviated a&(&)

i
=
fAl
B

(10-27)




10-5 Inferences on the VVariances of Two
Normal Populations

10-5.1 The F Distribution

fix)

-
w=5 v=15 fix)

4

J

] 2 4 A " 10 - fl—n:.:.',w- |F|_'|:.:.:I1.'

Figure 10-4 Probability density functions of Figure 10-5  Upper and lower percentage
two F distributions. points of the F distribution.

¥



10-5 Inferences on the VVariances of Two
Normal Populations

10-5.1 The F Distribution

The lower-tail percentage points f can be found as follows.

1-a,u,v

(10-28)




10-5 Inferences on the VVariances of Two
Normal Populations

10-5.2 Hypothesis Tests on the Ratio of Two
Variances

Let X}, X}, ..., X}, bearandom sample from a normal population with mean ., and
variance oy, and let X5, Xs., ..., A5, be a random sample from a second normal pop-
ulation with mean p, and variance o3. Assume that both normal populations are
' a q c .
independent. Let 57 and 55 be the sample variances. Then the ratio
A .
_ .Sl,-"r'l]']

E— (n1 _1)812/0-12(”1 _1) F=2l
(nz _1)522/522(n2 —1) Safe

has an F distribution with n;, — | numerator degrees of freedom and n, — 1 denom-
inator degrees of freedom.

b2t
I [




10-5 Inferences on the VVariances of Two
Normal Populations

10-5.2 Hypothesis Tests on the Ratio of Two
Variances

- i) i
Null hypothesis: Hy: o1 = o3
i)
- ST |
Test statistic: Fy = 2 (10-29)
27
Alternative Hypotheses Rejection Criterion
Hy: o7 # o3 Jo = fepm—1,0-1 O fo < fi—ajza—1.m-1
Hy: a7 = o3 Jo = fon—1.0-1
Hy: o7 < o3 Ja '-“:-..’i—u-r.q—l-r.'rl




10-5 Inferences on the VVariances of Two
Normal Populations

Example 10-11

Oxide layvers on semiconductor walers are etched mnoa mixture of gases to achieve the proper
thickness. The vartability in the thickness of these oxide layers 1s a eritical charactenstic of the

water, and low vanability 1s desirable for subsequent processing steps. Two different mixtures

of gases are being studied to determine whether one 15 supernior in reducing the vanabily of
the oxide thickness. Twenty wafers are etched in each gas. The sample standard deviations of

oxide thickness are 5, = 1.96 angstroms and 5, = 2,13 angstroms, respectively. Is there am

evidence to indicate that either gas s preferable” Use oo = 0,05




10-5 Inferences on the VVariances of Two
Normal Populations

Example 10-11

The eight-step hypothezis-testing procedure may be applied o this problem as follows:

.  The parameters of interest are the vanances of oxide thickness o and o3 We will
assume that oxide thickness 15 a normal random vanable for both gas mixtures.

Hy: o1 = o3

Hy o7 # o3

o = (s

L7 | TR SR R

The test statistic 1s given by Equation 10-29:

— d

. -""
fo=—=
37



10-5 Inferences on the VVariances of Two
Normal Populations

Example 10-11

0.

Since 1y = iy = 20, we will reject Hy o] = o3 1F fy = fomsioge = 2.53 or

e e i tmoEa — an
o < fosgrsie1e = VWonzsiens = 1/2.53 = 040,

Computations: Sice sy = (1.96)° = 3. 84 and 53 = (2,13 = 4.54. the test statistc 1s

R _
-illl:l = = - = )&
' v 4.54
Conclusions: Since figrs o = 040 << f, = 085 << fip0s 000 = 2.53, we cannol

reject the null hypothesis Hy: o7 = o3 at the 00,05 level of signmificance. Therefore,

there 1s no strong evidence to indicate that either gas results in a smaller vanance of
oxide thickness.



10-5 Inferences on the VVariances of Two
Normal Populations

10-5.3 Type Il Error and Choice of Sample Size

Appendix ChartsQle, Vllp, Vilg, and@pmvide operating characteristic curves for the
F-test given in Section 10-3.1 fora = 0,05 and o« = (.01, assuming that », = n, = n. Charts

VIl and V1lp are used with the two-sided alternate hypothesis. They plot B against the
abscissa parameter

_ T .
A= FE (10-30))

for various ny = n, = n. Charts VIlg and VIIr are used for the one-sided alternative hypotheses.




10-5 Inferences on the VVariances of Two
Normal Populations

Example 10-12

For the semiconductor wafer oxide etching problem in Example 10-11. suppose that one gas resulted in
a standard deviation of oxide thickness that is half the standard deviation of oxide thickness of the other

gas. [fwe wish to detect such a situation with probability at least (.80, is the sample size ny = n, = 20

adequate?
Mote that if one standard deviation is half the other,

N
=5, =2
By referring to Appendix Chart Vilo withn, = n, = »n = 20and X = 2, we find that p = 0.20. Therefore,
if B = 0.20, the power of the test (which 1s the probability that the ditterence in standard deviations will
be detected by the test) is 0,80, and we conclude that the sample sizes n, = n, = 20 are adequate.




10-5 Inferences on the VVariances of Two

Normal Populations

10-5.4 Confidence Interval on the Ratio of Two

Variances

§2 2 2
51 =TS

<y
%fl a/a—La—1 = 2= S% Y TE

can be obtained by taking square roots in Equation 10-31.

9 a 1 .
[f 571 and 55 are the sample variances of random samples of sizes », and n,, respec-

tively, from two independent normal populations with unknown variances o1 and o3,
then a 100(1 — «)% confidence interval on the ratio o}/o} is

(10-31)

where fopn _1a-1 and fi_,2, 1,1 are the upper and lower a/2 percentage
points of the F distribution with », — 1 numerator and »; — 1 denominator degrees
of freedom, respectively. A confidence interval on the ratio of the standard deviations




10-5 Inferences on the VVariances of Two
Normal Populations

Example 10-13

A company manufactures impellers for use i jet-turbine engines. One of the operations
mvolves grinding a particular surface fimish on a tianium alloy component. Two different
erinding processes can be used. and both processes can produce parts at identical mean sur-

face roughness. The manufacturing engineer would like to select the process having the

lcast vanability m surface roughness. A random sample of 7y = 11 parts from the first
process results i a sample standard deviation s; = 5.1 micromches. and a random sample
ol 1, = 16 parts from the second process results i a sample standard deviation of s, = 4.7
micromches. We will find a 90% confidence mterval on the ratio of the two standard devi-
ations, o/,




10-5 Inferences on the VVariances of Two
Normal Populations

Example 10-13

Assuming that the two processes are independent and that surface roughness 1s normally
distributed, we can use Equation 10-31 as follows:
5, o1 ST,
= les5m =3 = T.fn.ni.li.m
n,=11 42 2 92
n,=16 (1) o _ B
S AN E w5 =-"——= .1k
(4.7) a; (47)
o, . .
0.678 <—1<1.832 [itincludes 1, so cannot claim
0, that the two standard deviations
are different at 90% confidence.]
where

_ 1 _ 1 _
1:0.95,15,10 — ﬁ0.0S,IO,IS — 4.54 =0.39



10-6 Inference on Two Population
Proportions

10-6.1 Large-Sample Test on the Difference Iin
Population Proportions

We wish to test the hypotheses:

Hy: p1 = pa
Hy:py # ps



10-6 Inference on Two Population
Proportions

10-6.1 Large-Sample Test on the Difference in
Population Proportions

The following test statistic 1s distributed
approximately as standard normal and 1s the
basis of the test:

Py—P,— (p1 — )

il — 1) pal — p2)
Y My B 7

s =

(10-32)




10-6 Inference on Two Population
Proportions

10-6.1 Large-Sample Test on the Difference in

Population Proportions
A~ X+ X,

where P =
nl + n2

Null hypothesis: Hy: py = ps
(10-33)

P - P,
b -y L4 ]
VAU =P+

Rejection Criterion

E.:.:

Test statistic:

Alternative Hypotheses

[ -\'} [ - i': —
Zp < Zap Or 2y = Zapn

H|:F'| ?EJ.'_'.'E
H:p, = p, T, > I,
H:p<p: Zp <= —Z,




10-6 Inference on Two Population
Proportions

Example 10-14

Extracts of St. John's Wort are widely used to treat depression. An article in the April 18, 2001
1ssue of the Jowrnal of the American Medical Association (“Effectiveness of St. John’s Wort
on Major Depression: A Randomized Controlled Trial™) compared the efficacy of a standard
extract of St. John’s Wort with a placebo in 200 outpatients diagnosed with major depression.
Patients were randomly assigned to two groups; one group received the St. John’s Wort, and
the other received the placebo. After eight weeks, 19 of the placebo-treated patients showed
improvement, whereas 27 of those treated with 5t. John's Wort improved. Is there any reason
to believe that St. John's Wort 1s effective in treating major depression? Use ao = .03,

The eight-step hypothesis testing procedure leads to the following results:

Placebo: yalanci ilag
St. John’s wort: sar1 kantaron



10-6 Inference on Two Population
Proportions

Example 10-14

1. The parameters of interest are p, and p,. the proportion of patients who improve
following treatment with St. Johns Wort ( p,) or the placebo ( p,).

2. | Hy:py = py

3. | Hy:py #F ps

4. a = 0.05

5. The test statistic 1s

P1r— P2
N2
\ A0 - ﬂ)(ﬁ + r)

where|p, = 27/100 = 0.27, p, = 19/100 = 0.19. n; = n, = 100, and

n —

A__"l.'|‘|'."[3 . 19 + 27 — 0.23
P 4+ ny 100 4+ 100 =




10-6 Inference on Two Population
Proportions

Example 10-14

Reject Hy: py = pyifizg = zggos = 190 or itz << —zg 05 = —1.96.

7. Computations: The value of the test statistic 1s

0.27 — 0.19

| 1 |
f { F)
' ‘“'?’)(1(}(} T mn)

8. Conclusions: Since z; = 1.35 does not exceed z,45, we cannot reject the null hy-
pothesis. Note that the P-value is P = 0.177. There is nsufficient evidence to
support the claim that St. John's Wort 1s effective in treating major depression.

= 1.35

b
i




10-6 Inference on Two Population
Proportions

Minitab Output for Example 10-14

Minitab Computations

Test and CI1 for Two Proportions

Sample X M Sample p
| 27 100 (0.270000
2 |9 100 (0. 190000

Estimate for p(1) — p(2): 0.08
O5% Cl for pil) — p(2) ( —00361 186, 01961 19)
Test forp(l) — p(2) = 0(vsnot = 0) £ = 1.35 P-Value = 0.177




10-6 Inference on Two Population
Proportions

10-6.2 Type Il Error and Choice of Sample Size

If the alternative hypothesis 1s two sided, the B-error 15

. ijru;z"%"ﬁ{lfﬂj + 1/n3) — (p1 — ﬁ’z}]

op-P,

— 20N BG(1/ny + 1/ng) — (o) —
_‘I'[ a2 v Pg Ly fna) — (M ﬁ’z}] (10-35)

Tp_p,

o _\/pl(l_p1)+ pz(l_pz)

ap T
nl nZ

n1p1+n2p2 and q:nl(l_p1)+nz(1_p2)
I’]l+l’]2 n1+n2

E:




10-6 Inference on Two Population
Proportions

10-6.2 Type Il Error and Choice of Sample Size

If the alternative hypothesis 1s H: p; = pa.

Za VPq(l/m + 1/m) — (p1 — pa) o
B= *I*[ 5 p. (10-36)
and 1f the alternative hypothesis is H,: p, < p.,
—z, vV Pg (1 + 1/m) — —
B=1_ q,[ NV PG(1/m + 1m) — (py P;}] (10-37)
Tp—E,




10-6 Inference on Two Population
Proportions

10-6.2 Type Il Error and Choice of Sample Size

For the two-sided alternative, the common sample size1s N, =N, =N

2

[za2V (P21 + P2)g) + g2)/2 + zp V1) + Paga]
(p1 — pa)f’

n =

where g, = 1 — pjandg, = 1 — ps.

(10-38)




10-6 Inference on Two Population
Proportions

10-6.3 Confidence Interval on the Difference in the
Population Proportions

If p; and p; are the sample proportions of observation in two independent random
samples of sizes n; and n, that belong to a class of interest, an approximate two-
sided 1001 — @)% confidence interval on the difference in the true proportions
P = P is

ekl =py) a1 = pa)
I3 _PE_';EJ"'E\I. ) T o

_ . il —p) el — pa) o
=p —Pr=p— P +:,1;3\ " + = (10-39)

where z, 5, 1s the upper /2 percentage point of the standard normal distribution.




10-6 Inference on Two Population
Proportions

Example 10-15

Consider the process manufacturing crankshaft bearings described in Example 8-6.
Suppose that a modification is made in the surface finishing process and that, subse-
quently, a second random sample of 85 axle shatts is obtained. The number of defective
shafts in this second sample is 8. Therefore, since ny = 85, p; = 0.12, n, = 85, and

P, = &/85 = 0.0Y, we can obtain an approximate 93% confidence interval on the

difference in the proportion of defective bearings produced under the two processes from
Equation 10-39 as follows:

S (1= p) | ol — o)
1T P2 T Zoao2s \ i, +




10-6 Inference on Two Population
Proportions

Example 10-15

ar

[0.12(0.88)  0.09(0.91)
.- — + —
N 85 83

0.12 — 0.09 — 1.96

0.12(0.88)  0.09(0.91)

+ -
\ 85 85

=p;—pr =012 =009+ 1.96
This simplifies to

This confidence interval includes zero, so, based on the sample data, it seems unlikely that the

changes made in the surface finish process have reduced the proportion of defective crank-
shaft bearings being produced.
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